Improving Accuracy of RTT Estimation of the ICMPTrain Algorithm

Christopher O. Morales, Yuri Pradkin and John Heidemann

Problem Statement

- Accurate estimation of RTTs in internet-wide scans would help improve accuracy of geolocation.
- ICMPTrain algorithm probes all IPv4 addresses in the Internet to establish which ones are live •
- Currently ICMPTrain probes each address once. If we probe more, we can be more accurate.
- Our goal: design adaptive probing to
 - a) Minimize error
 - b)While minimizing number of probe
- Approach:
 - Modify ICMPTrain to probe adaptively.
 - Measure how many probes per address are enough for correct estimate, and what is the error.

ICMPtrain

#fsdb -	F t reply_type	time_s	rtt_us	ttl probe_a	ıddr	reply_addr
# TXT:	**magic					
# TXT:	<pre>**checkpoint:32</pre>	,0/0,0,0	,0			
# TXT: @(#) \$Id: 540fd15362714e7b26bd91e401545eab8aaddfb7 \$						
# TXT:						
0x0000	1531337591	258	64	128.9.160.77	128.9.16	0.77
0x0000	1531337591	251	64	128.9.160.93	128.9.16	0.93
0x0000	1531337592	262	64	128.9.160.129	128.9.16	0.129
0x0000	1531337592	519	64	128.9.160.61	128.9.16	0.61
0x0000	1531337593	270	64	128.9.160.101	128.9.16	0.101
0x0000	1531337593	212	64	128.9.160.197	128.9.16	0.197
0x0000	1531337594	276	64	128.9.160.89	128.9.16	0.89
0x0000	1531337594	320	64	128.9.160.105	128.9.16	0.105
0x0000	1531337594	553	64	128.9.160.109	128.9.16	0.109
0x0301	1531337591	3051705	64	128.9.160.153	128.9.16	0.170
0x0301	1531337591	3083723	64	128.9.160.249	128.9.16	0.170
0x0301	1531337591	3051663	64	128.9.160.241	128.9.16	0.170
0x0301	1531337591	3091657	64	128.9.160.1	128.9.16	0.170
0x0000	1531337595	328	255	128.9.160.161	128.9.16	0.161
0x0301	1531337592	3108669	64	128.9.160.73	128.9.16	0.170
0x0301	1531337592	3066603	64	128.9.160.201	128.9.16	0.170
0x0301	1531337592	3082645	64	128.9.160.33	128.9.16	0.170
0x0000	1531337595	385	32	128.9.160.25	128.9.16	0.25

Challenges Measuring RTT

- Problem: Multiple factors affect
 - Bandwidth.
 - Queue Delays.
 - Physical Distance (Propagation Delay).
- Solution: Having multiple probes from each IP can be more accurate on finding true RTT.

ICMPTrain sending multiple pings.

- Sends multiple pings to multiple ip addresses.
- used ICMPTrain to use pinging.
- ping 20 times each ip to collect statistics.
- get IP address from random ip from a hitlist. ۲

Ei = R + Qi

Minimum RTT filters out queueing delay component of noise. •

Conclusions

- We learn that probing 10 times gives you good accurate measurements.
- Simulate this results on an adaptive algorithm that we created.
- We believe that adaptive will be more efficient and just as accurate.
- Plans to run simulation to evaluate accuracy of adaptive algorithm.

Experiments:

RTT Accuracy Vs. Cost

Hypothesis: Do showing more Probe helps? Methodology:

EstimateRTT(target_ip, N_probes) = min(observation(1..N_probes, target_ip))

1) Selected random 1000 targets from hitlist 2) Ping each 20 times with a wait time of 5 seconds.

3) Discarded targets with incomplete observation, fewers than 20 results. 4) Calculated the ground true value from 20 probes.

5) GroundTruthRTT(IP) = EstimateRTT(rtt, rarget ip, 20)

6) Evaluate how much more probes help: EstimateRTT(target_ip, i) for I in 1 to 20 probes

• This is the error, compared to our ground

Expected Results: Maybe using few observation is as good as GroundTruthRTT.

Discussion:

Giving from the graph, the hypothesis is true. Using 9 observation is as good as GroundTruthRTT.

Distribution of RTT Accuracy

Hypothesis: How accurate is more Probe?

Methodology:

Estimatertt(target_ip, N_probes) = min(observation(1..N_probes, target_ip)) GroundTruthRTT(IP) = estimate(rtt, target_ip, 20) ErrN(N_probes,target_ip) = EstimateRTT() -GroundTruthRTT(target_ip) CounterTotalAmountError = size(ErrN) CDF(N_probes) = (count (sort(ErrN(N_probes, target_ip)) / CounterTotalAmountErrorRTT)

1) Selected random 1000 targets around the internet.

2) Ping each 20 times with a wait time of 5 seconds.

3) Discarded targets with incomplete observation, fewers than 20 results.

4) Calculated GroundTruthRTT value from 20 probes.

Expected Results: Maybe, for finding the best possibility of finding error is the 10 distribution of estimate.

Discussion:

The hypothesis is true. The distribution of estimate using 10 input, observation has a much higher fraction of finding the X percent of population.

Absolute Mean Error

truth for each IP if we probe it 'j' times:

AbsoluteError(IP, j) = estimate(rtt, target_ip, j) - groundThurthRTTMin(rtt (IP, k)) - GroundTruthRTT(IP) k = 1...j

5) Calculated the ErrN from first probe...last. 6) Sort the ErrN from minimum to maximum. 6) Finishing by calculating CDF which have a counter of the ErrN of each probe(1..20) errors and divided by a counter of total amount of error.

If interested contact <Christopher Morales> Christopher.Morales8@upr.edu Work performed under REU Site program supported by NSF grant #1659886

USCViterbi School of Engineering Information Sciences Institute