
Mitigating Algorithmic Complexity Attacks

Problem:
• Algorithmic complexity vulnerabilities provide a vector for low-rate DoS attacks
• Vulnerability is inherent to several widely used algorithms and data structures
Proposed Solution:
• We developed a model to detect these vulnerabilities in executables using binary analysis
• Our solution focuses specifically on vulnerable usage of the quicksort algorithm

Evaluation
Results
• Executed our tool on test binaries and on Linux user-space binaries
• Test binary results:

○ Our tool detected input passed to quicksort for simple test cases
• Real-world results:

○ Analyzed ~2000 binaries from Ubuntu 16.04 desktop install
○ Found 91 binaries with paths from input to quicksort function
○ Of these, 5 had paths of 100 nodes or less -- good candidates for further analysis

Future Work
• Detection steps 3-4 are currently too slow and memory-intensive to be practical on real binaries

○ Path Explosion: branches cause exponential increase in time and space requirements during
symbolic execution

○ Symbolic execution efficiency could be improved by ignoring untainted functions (functions which
do not perform any work on user input)

Exploiting Quicksort

Problem Statement

Background: Algorithmic
Complexity Attacks

Vulnerability Detection

Kai Walberg, Macalester College Christophe Hauser, USC Information Sciences Institute

If interested contact Kai Walberg (kwalberg@macalester.edu)
Work performed under REU Site program

supported by NSF grant #1659886

• Some algorithms are fast in general, but slow
in the worst case
○ ex: quicksort (O(nlogn) vs O(n2))

• Exploitable with crafted input
• Low-rate traffic can trigger denial of service
• Vulnerable algorithms include quicksort,

hash tables, regular expression parsers

Vulnerability characteristics:
1. Vulnerable function used in executable
2. Function handles user input
3. User input is unfiltered

Detection mechanism:
1. Locate input and vulnerable function
2. Check for possible path from input
3. Simulate execution from input to function
4. Confirm that simulated input data reaches

vulnerable function and check for filtering

• Used McIlroy’s “killer” input generator
• Demonstrated slowdowns in multiple libc versions

○ Tested on 10000-item sorts
○ Larger inputs give larger slowdowns

libc version Slowdown (killer vs random input)

glibc ~130x

dietlibc ~94x

FreeBSD ~115x

