Mitigating Algorithmic Complexity Attacks

Kai Walberg, Macalester College Christophe Hauser, USC Information Sciences Institute

Problem Statement

Problem:

 Algorithmic complexity vulnerabilities provide a vector for low-rate DoS attacks

* Vulnerability is inherent to several widely used algorithms and data structures

Proposed Solution:

* We developed a model to detect these vulnerabilities in executables using binary analysis
» Qur solution focuses specifically on vulnerable usage of the quicksort algorithm

Background: Algorithmia / Exploiting Quicksort

Complexity Attacks » Used Mcllroy’s “killer” input generator
 Demonstrated slowdowns in multiple libc versions

o Tested on 10000-item sorts
o Larger inputs give larger slowdowns

Some algorithms are fast in general, but slow
In the worst case

o ex: quicksort (O(nlogn) vs O(n?))
Exploitable with crafted input

Low-rate traffic can trigger denial of service libc version Slowdown (killer vs random input)

Vulnerable algorithms include quicksort,/ glibc ~130x

hash tables, regular expression parsers
dietlibc ~94x

Vulnerability Detection \ FreeBSD ~115x

Vulnerability characteristics: freebsd gsort() performance - "killer" vs. random input

1. Vulnerable function used in executable 125000 il oo
2. Function handles user input = rendomine
3. User input is unfiltered

100000

75000

Detection mechanism:

. Locate input and vulnerable function
. Check for possible path from input 25000
. Simulate execution from input to function

. Confirm that simulated input data reaches 0 512
vulnerable function and check for filtering/ \ input size

Evaluation

50000

of comparisons

Results
* Executed our tool on test binaries and on Linux user-space binaries
* Test binary results:
o Our tool detected input passed to quicksort for simple test cases
* Real-world results:
o Analyzed ~2000 binaries from Ubuntu 16.04 desktop install
o Found 91 binaries with paths from input to quicksort function
o Of these, 5 had paths of 100 nodes or less -- good candidates for further analysis

Future Work
» Detection steps 3-4 are currently too slow and memory-intensive to be practical on real binaries
o Path Explosion: branches cause exponential increase in time and space requirements during
symbolic execution
o Symbolic execution efficiency could be improved by ignoring untainted functions (functions which
do not perform any work on user input)

If interested contact Kai Walberg (kwalberg@macalester.edu) - .
Work performed under REU Site program USC\[lteI'bl

supported by NSF grant #1659886 School of Engineering

I nfarmaz‘ion Sciences Institute

