
Refined Cyberbullying Representation 
for Machine Learning Classification

Automatic cyberbullying detection methods are unfit for real-world applications [3]. This is largely due to:
• Unreliable data: inconsistent criteria, [2,3,4] context-blind annotations, [3] class imbalance [2,3]

• Coarse features: bag-of-words (BoW) methods lack nuance and cannot adapt to language change

Goal 1: Produce a reliable dataset of labeled cyberbullying cases within Twitter threads
Goal 2: Train a cyberbullying classifier from a refined set of social features

6. Conclusions
• Text-based methods can reliably detect aggressive language 
• Social features are better suited for detecting repetition, visibility 

among peers, and power imbalance
• Classifiers are not yet ready for the real world [3,4]

• Future Work: increase performance, build new features, detect 
social roles, measure efficiency (run time, number of API calls, etc.)

3. Annotation Task

1. Problem Statement

2. Data Collection 4. Feature Engineering
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• Scrape: 1.3 million tweets from Stream API
• Filter: English, @ mentions, non RTs, visible 

threads, hate speech / offensive language [1]

• 6,897 message threads
• Collect user data: account information (friends, 

following) and 6 months of each timeline

Timeline Features
• Message Behavior

• Directed message counts
• Mentions overlap (Jaccard)  

• Language Models 
• New-words ratio
• Cross-entropy
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• Timeline similarity
• cos 𝜃 = 7⃗⋅:
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for author timeline 𝐴	and target timeline 𝑇

MTurk study: 3 annotations per message thread
• Label author & target @handles for each tweet
• Given the full message thread and up to 15 

recent mentions, provide labels for 5 criteria
1) Aggressive language: confrontational, derogatory, 

insulting, threatening, hostile, violent, hateful, or sexually 
abusive language directed towards individual or group [2,3,5]

2) Repetition: 2+ aggressive messages [2,3,4]

3) Harmful intent: author intends to tear down or 
disadvantage the target user [3,4,5]

4) Visibility among peers: one other user has liked, 
quoted, retweeted or responded to the author [3]

5) Power Imbalance: does the author or target have 
greater social advantage / perceived authority? [2,4]
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5. Model Evaluation
Criterion Class 

Balance
Inter-annotator 

Agreement
Cyberbullying 

Correlation
aggression 74.8% 0.23 0.68

repetition 6.6% 0.18 0.27
harmful intent 16.1% 0.42 0.22

visibility among peers 30.1% 0.51 0.07
target power 78.9% 0.37 0.11

author power 3.1% 0.10 -0.02

equal power 59.7% 0.22 -0.09

cyberbullying 0.7% 0.18 -
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• Advantages: clear criteria, flexible 
cyberbullying definition, context-aware 
annotations, more balanced class distributions
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BoW: unigrams, 
bigrams, trigrams

Text: n-grams, LIWC, 
VADER, Flesch-
Kincaid

User: social network 
features, timeline 
features

Proposed: social 
network features, 
timeline features, 
thread features

Combined: all 
features

Baseline Features
• Text: N-Grams, LIWC, VADER, 

Flesch-Kinkaid Reading Ease [1,5]

• User: Friend/following counts, 
verified status, number of posts

Timeline Similarity
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𝑇

Thread Features
• Visibility

• Message count, reply message 
count, reply user count, max 
author favorites, max author RTs

• Aggression
• Aggressive message count, 

aggressive author message 
count, aggressive user count [1]

Network Features
• Neighborhood Overlap
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for author 𝑎 and target 𝑡,
𝑁 𝑢 is the neighborhood set of user 𝑢
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