

EMORY

UNIVERSITY

Refined Cyberbullying Representation for Machine Learning Classification

Caleb Ziems Emory University

Fred Morstatter USC Information Sciences Institute

1. Problem Statement

Automatic cyberbullying detection methods are unfit for real-world applications ^[3]. This is largely due to:

- Unreliable data: inconsistent criteria, ^[2,3,4] context-blind annotations, ^[3] class imbalance ^[2,3]
- Coarse features: bag-of-words (BoW) methods lack nuance and cannot adapt to language change

Goal 1: Produce a reliable dataset of labeled cyberbullying cases within Twitter threads Goal 2: Train a cyberbullying classifier from a refined set of social features

2. Data Collection

- Scrape: 1.3 million tweets from Stream API
- Filter: English, @ mentions, non RTs, visible threads, hate speech / offensive language ^[1]
 - 6,897 message threads
- **Collect user data:** account information (friends, following) and 6 months of each timeline

4. Feature Engineering

Baseline Features

- **Text:** N-Grams, LIWC, VADER, Flesch-Kinkaid Reading Ease ^[1,5]
- **User:** Friend/following counts, verified status, number of posts

Thread Features

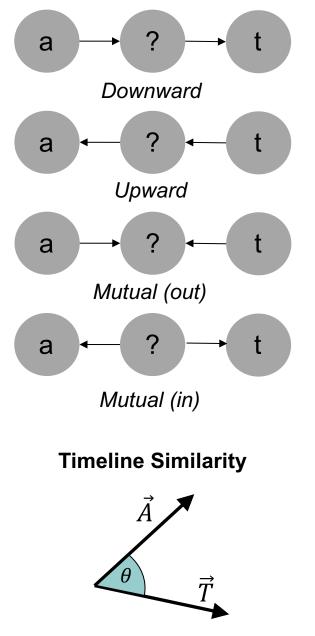
- Visibility
- Message count, reply message count, reply user count, max author favorites, max author RTs
 Aggression
 Aggressive message count, aggressive author message count, aggressive user count ^[1]

Network Features

- Neighborhood Overlap
 - $JC = \frac{|N(a) \cap N(t)|}{|N(a) \cup N(t)|}$

for author a and target t, N(u) is the neighborhood set of user u

Neighborhood Overlap



3. Annotation Task

MTurk study: 3 annotations per message thread

- Label author & target @handles for each tweet
- Given the <u>full message thread</u> and up to 15 recent mentions, provide labels for 5 criteria
 - **1) Aggressive language:** confrontational, derogatory, insulting, threatening, hostile, violent, hateful, or sexually abusive language directed towards individual or group ^[2,3,5]
 - 2) Repetition: 2+ aggressive messages ^[2,3,4]
 - **3)** Harmful intent: author intends to tear down or disadvantage the target user ^[3,4,5]
 - **4) Visibility among peers:** one other user has liked, quoted, retweeted or responded to the author ^[3]
 - **5) Power Imbalance:** does the author or target have greater social advantage / perceived authority? ^[2,4]

Criterion	Class Balance	Inter-annotator Agreement	Cyberbullying Correlation
aggression	74.8%	0.23	0.68
repetition	6.6%	0.18	0.27
harmful intent	16.1%	0.42	0.22
visibility among peers	30.1%	0.51	0.07
target power	78.9%	0.37	0.11
author power	3.1%	0.10	-0.02
equal power	59.7%	0.22	-0.09
cyberbullying	0.7%	0.18	-

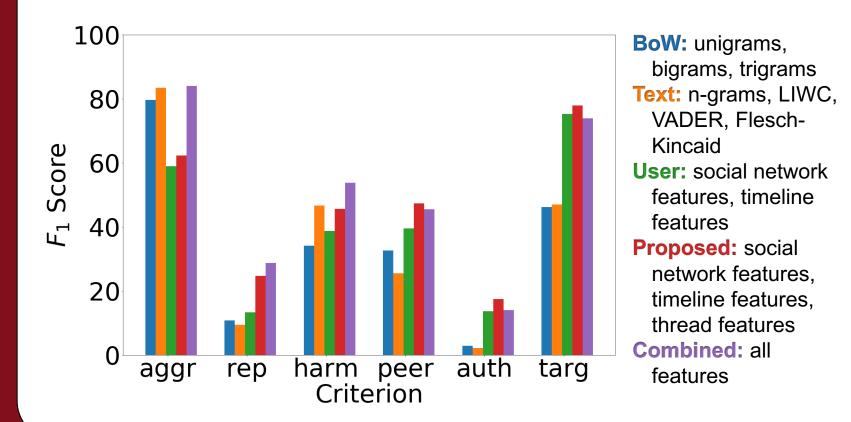
• Advantages: clear criteria, flexible cyberbullying definition, context-aware annotations, more balanced class distributions

Timeline Features

- Message Behavior
 - Directed message counts
 - Mentions overlap (Jaccard)
- Language Models
 - New-words ratio
 - Cross-entropy
 - $H(m) = -\frac{1}{N} \sum_{i} \log P(b_i)$ for message *m* with bigrams $b_1, b_2, ..., b_N$
- Timeline similarity
 - $\cos \theta = \frac{\vec{A} \cdot \vec{T}}{\|\vec{A}\| \|\vec{T}\|}$

for author timeline \vec{A} and target timeline \vec{T}

5. Model Evaluation



6. Conclusions

- **Text-based** methods can reliably detect *aggressive language*
- Social features are better suited for detecting repetition, visibility among peers, and power imbalance
- **Classifiers** are <u>not</u> yet ready for the real world ^[3,4]
- Future Work: increase performance, build new features, detect social roles, measure efficiency (run time, number of API calls, etc.)

References

[1] Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017, May). Automated hate speech detection and the problem of offensive language. In *Eleventh international aaai conference on web and social media*.

[2] Hosseinmardi, H., Mattson, S. A., Rafiq, R. I., Han, R., Lv, Q., & Mishra, S. (2015). Detection of cyberbullying incidents on the instagram social network. *arXiv preprint arXiv:1503.03909*.

[3] Rosa, H., Pereira, N., Ribeiro, R., Ferreira, P. C., Carvalho, J. P., Oliveira, S., ... & Trancoso, I. (2019). Automatic cyberbullying detection: A systematic review. Computers in Human Behavior, 93, 333-345.

[4] Salawu, S., He, Y., & Lumsden, J. (2017). Approaches to automated detection of cyberbullying: A survey. *IEEE Transactions on Affective Computing*.

[5] Van Hee, C., Jacobs, G., Emmery, C., Desmet, B., Lefever, E., Verhoeven, B., ... & Hoste, V. (2018). Automatic detection of cyberbullying in social media text. PloS one, 13(10), e0203794.

