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Problem Statement
« Recommendation systems using collaborative filtering (CF) models could cause homogeneity because

of the popularity bias and its continuous feedback loop.
« Popularity bias is when online platforms optimize recommendations based on what is considered
popular with the majority group, which can homogenize users' interests and perceptions.
* Goal: create a simple CF model to quantify the effects of the possible inequalities in recommendation
systems.
« Achallenge we faced was that some of the users did not provide ratings, which made it harder to
make accurate recommendations.
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In each experiment, test users were given a similarity score and the rating for a particular item.
set # of jokes to rate on a scale from -10 to * The item with the highest recommendation score
+10 before receiving a recommendation. \gets recommended.
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Lo Case 1: Single Training | Case 2: Repeated Training EX p eri m ent:
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[ — = —_ | « We compare both cases to the optimal
ﬁg/f s and random ginis for set # of jokes.
/e sl T Results:
« A set of 2 jokes has the most
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e - ]+ Slope comparisons near the start
D7 P umberof Recommendations D7 P umber of Recommendations emphasize the inequalities in case 2.
Case 1: Single training Case 2 : Repeated training « Final gini values for case 2 are higher
e training set stays static * training set is updated with  than those for case 1.
and does not get updated new test users every 100 * This shows that repeated traininy

recommendations Increases inequalities.
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