Hyperparameter Tuning for the Derivative Compressive Sampling

Md Fazle Rabbi Fordham University

Problem Statement

- Derivative compressive sampling (DCS) is a signal recovery method to reconstruct a source signal using sub-Nyquist sampling rates when the signal gradients are measured.
- The DCS recovery algorithm is sensitive with respect to hyperparameters. Good results depend on tuning the hyperparameters properly.
- We study the sensitivity of DCS with respect to the algorithm hyperparameters and draw guidelines for the user to set up the values of the hyperparameters.

Problem Description

• DSC has been used to recover a surface (x) from measurements (y) using sub-Nyquist sampling rates.

 If we use the wrong hyperparameter values for Lambda (λ) and Delta (δ) for the DCS recovery algorithm, the reconstructed image will be blurry:

The reconstruction quality is conditioned on tuning the hyperparameters properly.

Hyperparameter Tuning

- The user should set the hyperparameter values in advance, but the challenge is the reference signal is not available in advance.
- If the values of the hyperparameters are not appropriately set, the recovery quality will be poor.

Brute-Search Sensitivity Analysis

- We study the performance sensitivity with respect to the hyperparameters by varying their values and then check the algorithmic recovery performance by adding noise to a reference signal and then recover it using the DCS algorithm.
- We conclude guidelines to setup values for the hyperparameters.

Results

- The brute-search values:
 - Lambda, $\lambda = [0, 0.0001, 0.001, 0.01, 0.1, 1, 10]$
 - Delta, $\delta = [0.1, 1, 2, 5, 10]$

Three noise types:

- 1. Gaussian
- 2. Laplacian
- 3. Salt and Pepper

Nine Surfaces:

Fig. 2. Synthetic surfaces (a) Ramp-peak (b) Sphere, (c) Peak-valley, and (d) sample photos of 6 real objects. (Top from left to right: Cat, Rock, and Horse. Bottom from left to right: Gray, Owl, and Buddha.)

Sensitivity Graphs:

- Conclusions:
 - The values Lambda, λ = 0 and Delta, δ = 2 leads to the best average performance